“No One Size Fits All!”

Kendra Breiland
Principal
June 15, 2017
Multimodal Policies of All Shapes and Sizes

- Worked with 40+ WA Cities to implement multimodal LOS policies
- Policies can be simple or more complex
- Shaped to guide different capital budgets
- But, in all cases, expands the view from auto centric to all modes
Multi-Modal Level of Service

Balance and prioritize design to meet street’s purpose
LOS: In the Eye of the Beholder

To a driver: LOS A
To an economist: LOS F

To a driver: LOS F
To an economist: LOS A
Balancing Community Values

“What you measure is what you get.”

- Vehicle congestion
- Pedestrian safety & crossing comfort
- Property impacts
- Sustainability & Stormwater
Revising the Level of Service Policy

Key Questions:

▪ What is the community’s tolerance for congestion?

▪ How important is delay reduction vs. other objectives such as accommodating other modes, maintaining an urban form, or fiscal constraint?

▪ Is the objective to reduce delay at a certain intersection or to maintain reasonable travel times along a corridor?
What is Multimodal LOS?

- Is this a nice place to drive?
- Is this a nice place to bike?
- Is this a nice place to walk?
- Is transit convenient?
HCM 2010 Complexity

LOS Model Interactions

- Facility Design
- Facility Control
- Facility Maintenance
- Transit Service
- Mode Volumes

- Lane Geometry
- Bus Stops
- Bus Lane
- Sidewalk
- Trees
- Signal Timing
- Speed Limit
- Pavement
- Bus Headway
- Auto/Trucks
- Auto/Trucks Pass.
- Bikes
- Pedestrians
- Bike-Ped Conflicts
- Left Turn Lane
- Speeds
- Delay
- Bus Speed
- Bus Wait
- Bus Access

- Auto LOS
- Transit LOS
- Bike LOS
- Ped LOS
- Ped Density

- Bus Boarding Pass.
How do we Measure Multimodal LOS?

Traditional methodologies: density, delay

- Works pretty well for vehicles, but not for other modes

Newer Methodologies: Comfort, System Completion

- Built environment factors
- Layered networks
The Menu is Large!

Auto
V/C ratio
Intersection delay
Corridor travel time

Transit
Service present
Service quality
Corridor amenities

Bicycle
Network completeness
Connectivity
Perceptions of safety / Stress

Global Measures
Mode split
VMT
Person trips
Person delay
Mobility units

Pedestrian
Sidewalks
Connectivity
Block length
Whose LOS is more important?

Illustration of analysis by mode

Vehicle	Buses	Pedestrian	Bicycle	Average
Option 5 | 28.7 | 29.8 | 64.2 | 15.1 | 28.1

PM Peak Hour Delay

HCM Intersection LOS = C

Source: Fehr & Peers
Supportive Land Uses

Urban Design Factors

ADA Features

Supporting Facilities
Different Streets can Have Different LOS

Commuter/Mobility Corridor
- Desired Overall Performance: D B C C C A

Urban Activity Center
- Desired Overall Performance: B C D E B

Local Street
- Desired Overall Performance: B B C F F
How the Pieces Fit Together

1. WHAT TO MEASURE?
 - Mode Share
 - Travel Time
 - Individual LOS
 - VMT
 - System Completeness
 - Congestion/Delay

2. SET A STANDARD
 - Data Requirements
 - Achievability
 - Consistent with City Vision
 - Simple to Administer and Evaluate

3. EVALUATE CONCURRENCEY
 Is there adequate transportation infrastructure to meet travel demand of new growth?

4. COLLECT IMPACT FEE

5. BUILD PROJECTS
Multimodal Concurrency Options

<table>
<thead>
<tr>
<th>OPTION</th>
<th>WHO DOES THIS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Share</td>
<td>Seattle</td>
</tr>
<tr>
<td>Average Travel Time/Distance</td>
<td>Renton</td>
</tr>
<tr>
<td>Evaluate Conditions for Each Mode</td>
<td>Some Florida Cities, Ft. Collins Tukwila (tested)</td>
</tr>
<tr>
<td>Vehicle Miles of Travel</td>
<td>California Cities</td>
</tr>
<tr>
<td>System Completeness</td>
<td>Bellingham, Redmond, Kirkland, Kenmore</td>
</tr>
</tbody>
</table>
Questions?

Kendra Breiland
k.breiland@fehrandpeers.com