Model Preparation for the next Regional Transportation Plan
Outline

• RTP Overview

• Modeling Initiatives:
 – Moving to a 2018 Base Year
 – Soundcast Improvements
 – Open Street Map (OSM) Based Networks
RTP Overview

• Anticipate modeling in Fall 2020
• Land-use to be consistent with Vision 2050 Growth Strategy.
• Emerging Transportation Technology
• New Transportation Projects.
2018 Base Year
• Recognize the need to start with (more) current conditions:
 – 2022 Plan Adoption
 – New Infrastructure
 – Changing Behavior / Trends
2018 Base Year- Landuse

• Data Development
 – Parcels, Buildings (Assessor’s Extracts)
 – Employment
 – Synthetic Population (HHs & Persons)
2018 Base Year- UrbanSim

• Need to create new Landuse datasets that reflect the adopted Vision Growth Strategy.
 – Run using same jurisdictional control totals developed for Vision..
 – First set of land use products post vision.
 – Will be used as inputs to Soundcast for RTP.
2018 Base Year - Soundcast

- Data Development
 - Networks
 - Tolls/Fares/Parking costs
 - Observed data
 - Traffic Counts
 - Transit Boardings
• Estimation/Calibration
 – Estimate models if significant changes have occurred:
 • Mode Choice Models to include TNCs.
 – Otherwise calibrate to HH Survey
• Validation & Sensitivity Testing
 – Daysim model results will be validated against HH Survey.
 – Assignment Results validated against traffic counts, boardings
 – Sensitivity/Reasonableness Tests constructed to test the types of questions/analysis in the next RTP.
Soundcast Improvements
Soundcast Improvements

• Adding features to address and improve:
 – Connected Autonomous Vehicles (CAVs)
 – Ridehailing (aka TNCs, Uber/Lyft/etc.)
Guidance on Model Improvements

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

NCHRP RESEARCH REPORT 896

Updating Regional Transportation Planning and Modeling Tools to Address Impacts of Connected and Automated Vehicles

Volume 2: Guidance

Johanna Zmud
TEXAS A&M TRANSPORTATION INSTITUTE
Washington, DC

Tom Williams
DKS ASSOCIATES
Austin, TX

Maren Outwater
AND

Mark Bradley
RESOURCE SYSTEMS GROUP
San Diego, CA

http://www.trb.org/Main/Blurbs/178393.aspx
NCHRP Recommendations

• Context
• Addressing & Communicating Uncertainty
• CAV Modeling Frameworks
• Model Adaptations
Short-Term Improvements

<table>
<thead>
<tr>
<th>Model/Parameter</th>
<th>Feature</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Ownership</td>
<td>Add CAV as ownership option</td>
<td>Complete</td>
</tr>
<tr>
<td>Mode Choice</td>
<td>Allow CAV as separate mode</td>
<td>Complete</td>
</tr>
<tr>
<td>Mode Choice</td>
<td>Allow TNC as separate mode</td>
<td>Complete</td>
</tr>
<tr>
<td>Mode Choice</td>
<td>Adjust value of time for CAV</td>
<td>Complete</td>
</tr>
<tr>
<td>Mode Choice</td>
<td>TNC/CAV access to transit</td>
<td>In Progress</td>
</tr>
<tr>
<td>Assignment</td>
<td>Modify capacity for full CAV fleet</td>
<td>Complete</td>
</tr>
<tr>
<td>Assignment</td>
<td>Modify volume delay functions</td>
<td>In Progress</td>
</tr>
</tbody>
</table>
Existing Improvements

• Allows testing of:
 – 100% CAV environment
 • 100% vehicles owned are CAVs (adjust constant)
 • Increased capacity on freeways and some arterials
 • Assert parking cost reductions
 – CAV ownership model
 • Simple model: age, income, commute time, VOT in CAV
 – CAV priority lanes/roads
Longer Term Improvements from NCHRP

<table>
<thead>
<tr>
<th>Model/Parameter</th>
<th>Feature</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Ownership</td>
<td>Add purchase cost, CAV incentives, parking cost, accessibility, etc.</td>
<td>?</td>
</tr>
<tr>
<td>Activity Generation & Mode Choice</td>
<td>Remove age constraints from CAVs</td>
<td>?</td>
</tr>
<tr>
<td>Activity Generation</td>
<td>Track empty vehicle trips</td>
<td>?</td>
</tr>
<tr>
<td>Pricing</td>
<td>Dynamic pricing for CAV/TNC</td>
<td></td>
</tr>
<tr>
<td>Parking Model</td>
<td>Add parking choice model, with off-site parking options, dynamic pricing and availability</td>
<td></td>
</tr>
</tbody>
</table>
Other Considerations

• Trucks
 – Benefit from increased capacity
 – Less guidance on including impacts here

• Externals
 – Longer distance travel impacts?
Soundcast GUI

Soundcast
PSRC’s Regional Travel Model

Initial Setup
- Run Accessibility Calculations
- Setup Envme Project Folders
- Setup Envmebank Folders
- Copy Scenario Inputs
- Import Networks

Model Procedures
- Start with Freewflow Assignment and Skims
- Run Assignment and Skimming
- Run Truck Model
- Run Supplemental Trips
- Run Day/Time Choice Models
- Generate Summaries

Modes
- Include AV Modes
- Include TNCLs
- TNCLs are AV

Pricing
- Apply Per-Mile Distance Pricing
 - am
 - md
 - pm
- Include HOT Lane Tolls
 - am
 - md
 - pm

Run Soundcast
Quit
Emissions Modeling

• Emissions (tons/day) generated automatically for all runs:
 – GHGs and all criteria pollutants
 – MOVES 2014 rates incorporated for all years, multiplied by link VMT, binned by speed, hour, facility type, county
 – Includes start and running emissions
Soundcast Version Release

• V 2.1.1 -> v2.2
• Minor release to include:
 – bug fixes
 – Code/repo clean up
 – GUI
 – AV/TNC mode capability
 – Emissions summaries
OSM-Based Networks

• Overall Goals of the project
 – Replace existing roadway geometry with OSM
 – Use PSRC’s existing network attributes, update changes since 2014.
 – Carry forward important OSM attributes
 • OSM ID
 • One-way flag
OSM Overview

• What is OSM
 – “...is built by a community of mappers that contribute and maintain data about roads, trails, cafes, railway stations, and much more, all over the world.”
 – Community Driven
 – Open Data
OSM-Based Networks

• Why OSM?
 – One set of geometry, not a patchwork of local datasets
 – Highly detailed- freeways to trails.
 – Easy to update
 – Data sharing
OSM-Based Networks

• Project Steps
 – Create a Routable Network:
OSM-Based Networks

• Project Steps cont.
 – Used GIS tools to conflate old network to OSM
 – Significant Amount of QC work.
 – Added Non-OSM features
 • Centroid Connectors
 • Park & Rides
 • Future Network
OSM-Based Networks

• Project Steps cont.
 – Import 2018 Transit Network
 • Completed
 – Import Future Transit Networks
 – Add other spatially coincident data
 • Project Routes
OSM networks – more detail
Latest interchange configurations
Directional arterial edges
Too much detail?
Arterial delay implications
Centroid Connectors
Turn prohibitor issues
OSM - Concerns

- More detail (EMME node limit?)
 - Current Network = 25,600 nodes & 68,700 links
 - OSM Network = 28,400 nodes & 71,500 links

- Turn prohibitors (u-turns)

- Arterial delay implications