Funding Application

Competition
Regional FTA

Application Type
Main Competition

Status
submitted

Submitted:
April 27th, 2020 3:10 PM

Prepopulated with screening form?
N/A

Project Information

1. **Project Title**
 Route 36 Speed and Reliability Corridor Improvements

2. **Regional Transportation Plan ID**
 N/A

3. **Sponsoring Agency**
 King County Metro

4. **Cosponsors**
 N/A

5. **Does the sponsoring agency have "Certification Acceptance" status from WSDOT?**
 N/A

6. **If not, which agency will serve as your CA sponsor?**
 N/A

7. **Is your agency a designated recipient for FTA funds?**
 Yes

8. **Designated recipient concurrence**
 N/A

Contact Information

1. **Contact name**
 Eric Irelan

2. **Contact phone**
 206-477-3862

3. **Contact email**
 eric.irelan@kingcounty.gov

Project Description

1. **Project Scope**
 This project will make transit speed and reliability improvements on congested segments and bottlenecks along Metro Route 36, a trolleybus route operating between Othello LINK Light Rail Station and Downtown Seattle via Beacon Hill and planned future RapidRide Corridor. Route 36 carries over 9,800 weekday riders and is one of Metro’s highest ridership routes. The route serves multiple designated regional and local centers and significant numbers of transit dependent populations.

 The project would construct treatments including bus lanes, queue jumps, turning restrictions, transit signal priority, layover/bus zone improvements, bus stop optimization,
trolleywire modifications and other treatments to improve transit speed and reliability. Bus stop access upgrades would include adding bus bulbs, improved lighting, improved high visibility crosswalks street crossings, and possible sidewalk and bike connection reconstruction adjacent to new bus stops or bus bulbs to improve customer access and safety. See Attachment 4 for a list of preliminary improvements.

Project outcomes include:
- Travel time saving averaging 2-5 minutes per trip on the route, 5-10% of Route 36 travel time;
- Ridership increases between 2-4% based on Metro experience on similar projects with similar travel time savings, adding an estimated 200-400 new weekday riders or 80,000 new transit riders per year;
- Improved access and mobility for 85,000 people, include historically dependent transit populations;
- Improved access to 255,000 jobs from all sectors;
- Improved transit access and mobility to designated local and regional centers served by Route 36;
- Support adopted land use and zoning goals for housing and employment growth and retention; and
- Eliminate greenhouse gas emission of approximately 12,000 kg CO2 and reduce an estimated 8,000 gallons of annual fuel use from improved traffic operations and transit mode shift from single occupant vehicle (SOV) trips.

2. **Project Justification, Need, or Purpose**
 The project’s purpose is to help Metro provide high quality, reliable and efficient transit service through targeted speed and reliability improvements that result in greater operational efficiencies and increased ridership.

 Project need and desired outcomes include:
 1) Reduce congestion and improve transit service speed and reliability.
 Congestion and delay on Route 36 have created a slow and unreliable experience for thousands of daily riders. Increased traffic congestion has created challenges in meeting growing demand for service on the corridor. Some corridor sections suffer with LOS ratings of F, while others operate in free flow LOS A. As part of the prioritization effort for the proposed improvements, segments were identified where transit vehicles traveled at less than 50% of the posted speed limit.

 Almost 40% of Route 36 afternoon peak hour trips are late, resulting in slow bus speed and bus bunching which reduces actual service frequencies and operational efficiency. The proposed project will reduce transit and general purpose travel delay while increasing corridor person-capacity and throughput, growing transit ridership and improving transit speed and reliability.

 2) Provide better service to designated regional and local centers.
 Route 36 connects the Seattle Downtown and First Hill/Capitol Hill Regional Growth Centers as well as Seattle’s designated Beacon Hill and Othello Urban Villages. The project also connects to the Beacon Hill and Othello Transit Stations, and two Metro designated Transit Activity Centers. Route 36 travels within ½ mile walking distance of Seattle’s North Rainier Hub Urban Center and the Columbia City Residential Urban Village.

 3) Meet the transportation needs of historically underserved communities.
 The route serves areas and populations with high transit demand, including dense residential neighborhoods, employment clusters, medical and social services, parks and other destinations. The route serves a significant number of transit dependent populations including low income households, minority populations, seniors, and people living with a disability.

 4) Improve air quality and reduce greenhouse gas emissions.
 The project is forecasted to reducing vehicle toxics emissions, including approximately 12,000 kg of CO2 annually as a result of improved transit and general purpose traffic operations, and increased mode shift to transit from single occupancy vehicles (SOV).

Project Location

1. **Project Location**
 Route 36 corridor between the Othello LINK Light Rail Station and the intersection of 12th Ave
2. **Please identify the county(ies) in which the project is located. (Select all that apply.)**
 - King

3. **Crossroad/landmark nearest the beginning of the project**
 Othello LINK Light Rail Station: Martin Luther King Junior Way South and South Othello Street

4. **Crossroad/landmark nearest the end of the project**
 Downtown Seattle/International District: 12th Avenue South and South Jackson Street

5. **Map and project graphics**
 Attachment_1.pdf

Plan Consistency

1. **Is the project specifically identified in a local comprehensive plan?**
 Yes

2. **If yes, please indicate the (1) plan name, (2) relevant section(s), and (3) page number where it can be found.**
 The project is consistent with the King County Comprehensive Plan and the King County Metro Strategic Plan for Public Transportation which is adopted by the King County Council and included in the King County Comprehensive Plan by reference. It is also included in King County Metro’s METRO CONNECTS long-range plan. The project is recommended in the City of Seattle Transit Master Plan which is adopted by reference in of the Seattle Comprehensive Plan.

 King County Comprehensive Plan (2018):
 - T-101 The Strategic Plan for Public Transportation 2011-2021 and King County Metro Service Guidelines, or successor plans, shall guide the planning, development and implementation of the public transportation system and services operated by the King County Metro Transit Division. (p. 7-6)
 - T-103 In striving to meet the growing need for transportation services, King County shall seek to maximize the efficiency and effectiveness of its services, infrastructure and facilities. (p 7-8)
 - T-204 King County should support local and regional growth plans and policies by focusing transit services on centers and other areas of concentrated activity. (p. 7-13)

 Metro Strategic Plan (2015) Strategies:
 - 5.1.3: Improve transit speed and reliability; (p. 41)
 - 6.2.1: Continually explore and implement cost efficiencies, including operational and administrative efficiencies; (p. 45) and
 - 6.2.2: Provide and maintain capital assets to support efficient and effective service delivery (p. 45).

 METRO CONNECTS (2017):
 Corridor 1064 follows the majority of the current Route 36, from the Othello terminus to the intersection of 12th Ave S and S Jackson St. Metro Connects identifies 1064 as a frequent service corridor by 2025 and a RapidRide corridor by 2040, highlighting the potential for future investment in the Route 36 corridor. (p. 24, 30)
 - Work with partners to invest in speed and reliability improvements (pg. 42)
 - Develop partnerships to improve access to transit (pg. 59)
 - Route 36 is within Metro Access to Transit type Zone 1: High-density areas served by a grid of frequent service, such a downtown areas. Improvements focus on bicycle and pedestrian facilities, little or no expansion of Metro parking. Future bike/walk share 96% (pg. 54)

 Seattle Transit Master Plan (2017) is adopted as part of the Seattle Comprehensive Plan. Route 36 is identified as part of Priority Bus Corridor 1 (PB1) recommended as a Priority Transit Corridor for Capital Investments including a series of transit speed, reliability and access improvements and specifically calls for transit signal priority, trolleybus wire modifications, bus bulbs, and station upgrades, as well as multimodal improvements intended to increase transit ridership on this key corridor (TMP pg. 3-7; 3-61 through 3-65)

 Seattle 2035 Comprehensive Plan (2019)
 The Seattle Comprehensive Plan, recommends prioritizing transit investments and promoting transit use:
“Providing convenient and accessible transit service can help reduce reliance on single-occupant vehicles, slow the increase in environmental degradation associated with their use, and increase mobility without building new streets and highways. Street rights-of-way are limited and as streets get more congested, transit provides an efficient way to move large numbers of people around the city and the region and support growth in urban centers and villages. These policies will guide City decisions to enhance transit, and are also intended to guide decisions of transit serving Seattle.”

Specific Comprehensive Plan goals include:

TG11 Create a transit-oriented transportation system that builds strong neighborhoods and supports economic development.

TG12 Provide mobility and access by public transportation for the greatest number of people to the greatest number of services, jobs, educational opportunities, and other destinations.

TG13 Increase transit ridership, and thereby reduce use of single-occupant vehicles to reduce environmental degradation and the societal costs associated with their use.

3. If no, please describe how the project is consistent with the applicable local comprehensive plan, including specific local policies and provisions the project supports. In addition, please describe how the project is consistent with a transit agency plan or state plan, if applicable.

N/A

Federal Functional Classification

1. Functional class name

 00 Not applicable (transit, enhancements, Etc.)

Support for Centers

1. Describe the relationship of the project to the center(s) it is intended to support. Identify the designated regional growth or manufacturing/industrial center(s) and whether or not the project is located within the center or along a corridor connecting to the center(s).

 The Route 36 corridor provides direct, frequent service to multiple regional & local centers including:

 1) The Seattle Downtown and First Hill/Capitol Hill Regional Growth Centers,

 2) Seattle’s designated local centers at North Beacon Hill Residential Urban Village and Othello Residential Urban Village,

 3) Seattle’s North Rainier Hub Urban Center and Columbia City Residential Urban Village are also both within walking distance of Route 36, and

 4) Metro designated local centers at the Beacon Hill Station and Othello Station.

The Downtown Seattle and First Hill/Capitol Hill Regional Growth Centers provide multiple transit connections to other Regional Growth Centers including Northgate, University Community, Uptown, South Lake Union, and First Hill/Capitol Hill, Everett, Lynnwood, Bothell Canyon Park, Kirkland Totem Lake, Redmond Downtown, Bellevue, Issaquah, Renton, Burien, Tukwila, SeaTac, Kent, Auburn, Federal Way, Puyallup Downtown, Tacoma Downtown, and Lakewood, and the thousands of key destination and transfer points along the transit corridors connecting them.

The Beacon Hill and Othello LINK stations provide convenient access to fast frequent light rail service to regional and local centers, and transit centers across the region.

Criteria: Benefit to Center

1. Describe how the project will benefit or support the existing and planned housing and employment development of a center or centers. Does it support multiple centers?

 The Route 36 corridor is characterized by dense, mixed-use development with 37% of people living within ½ mile of the corridor not having access to a vehicle. The corridor currently serves 85,000 people and 255,000 jobs within ½ mile of the corridor, with 135,000 employees located in the Downtown Seattle Regional Growth Center. According to PSRC’s Regional Growth Strategy 2040 forecasts, population along the route will increase over 70%
The route averages over 9,800 weekday riders, providing all-day, two-way service, with 5-7.5 minutes during peak hours, 7.5-10 minutes midday, and 10-15 minutes evenings and weekends.

The proposed Route 36 Speed and Reliability Improvement project supports multiple designated regional and local centers. These centers include the Downtown Seattle and First Hill/Capitol Hill Regional Growth centers, the Othello and North Beacon Hill Urban Villages, Metro designated Transit Activity Centers at the Othello and Beacon Hill LINK light rail stations, and the many regional and local Centers that are transit accessible from Downtown Seattle and the Othello and Beacon Hill LINK stations.

Fast, frequent, reliable and easily accessible transit service along the Route 36 corridor will reinforce the intended function of these urban centers by providing increased transit mobility for residents and employees and is recommended by the City of Seattle to support planned housing and employment development goals and strategies within the local and regional centers served by the route (please see Attachment 2).

2. Describe how the project will support the development or redevelopment plans and activities (objectives and aims) of a center or centers.

The proposed project supports both PSRC’s 2040 Regional Growth Strategy and the City of Seattle’s adopted 2035 land use development strategies by increasing the effectiveness and efficiency of Route 36 to meet increasing transportation demand associated with these centers focused plans.

The Seattle 2035 Plan places a greater emphasis on focusing growth in designated Urban Villages (centers) that are served by frequent and reliable transit service, including the Othello and Beacon Hill Urban Villages. The City envisions that 1/2 of the city’s housing growth and 60 percent of its employment growth will occur within designated urban villages. The project will support transit-oriented development and other dense, mixed-use development designs by reducing the need for vehicle trips and parking demand associated with new development through higher transit usage. Urban villages, such as Othello and Beacon Hill, with high frequency transit service are forecasted to accommodate even more development than those with access to less frequent service.

PSRC’s Regional Transportation Plan relies on significant increases in transit ridership to help meet forecasted transportation demand, with local transit service doubling by 2040 through a catch-up and grow service delivery approach, with the assumption that transit service hours will be delivered at a lower overall cost.

The project’s proposed corridor improvements will help accommodate PSRC forecasted transportation demand and needed mode shift from SOV to transit.

3. Describe how the project improves access to major destinations within the center, including enhanced opportunities for active transportation that can provide public health benefits through the following relevant areas: walkability, public transit access, public transit speed and reliability, bicycle mobility and facilities, streetscape improvements, etc.

Route 36 provides an important link to the non-motorized transportation system by increasing access and mobility for transit customers, extending the range of trip lengths and increasing active transportation. Proposed improvements will result in more people walking, biking, and taking transit:

1) The majority of Route 36 customers begin their transit trips by either walking or biking to a bus stop. The corridor is characterized by dense, mixed-use development with 37% of people living within a half mile of the corridor not having access to a vehicle. There are no park and ride facilities located along the corridor.

2) Constructing nonmotorized access improvements at select bus stops along the corridor will attract additional customers. This will increase active transportation health benefits for existing and new riders traveling to centers and connecting destinations, including local parks, the Chief Sealth Trail and the I-90 Trail.

3) The project is forecasted to reduce toxic vehicle emissions including approximately 12,000 kg of CO2 annually as a result of improved transit operations, improved general purpose traffic operations, and increased mode shift to transit from (SOV), providing additional public health benefits.

4) All Metro buses are equipped with bike racks that hold up to three bikes, providing opportunities for cyclists to use the route.

4. Describe how the project provides a range of travel modes to users traveling to centers, or if it provides a missing mode.

This project will provide improvements to multiple travel modes and address bottlenecks in the corridor and make the transportation system operate more efficiently.
a) Transit users will have a more reliable and predictable trip as a result of the planned improvements. This will make transit an attractive alternative to driving alone to reach jobs, services, residential and recreation areas and trails in urban centers resulting in increased transit ridership.

b) General purpose traffic, truck freight, car/vanpool, and taxi/rideshare modes traveling the corridor will benefit from improved traffic operations as the project will include improvements to signal timing, channelization, and traffic flow. The project will also help reduce traffic congestion on the corridor through increasing transit ridership through mode shift from SOV trips.

c) The project will improve non-motorized access to bus stops. In some cases, the improvements complete missing links in the nonmotorized system, increasing safety and use of these facilities.

5. **Describe how the project will benefit a variety of users, including commuters, residents, and commercial users**.

By increasing Route 36 service reliability and providing faster travel along the corridor between local and regional growth centers, the project will benefit numerous user groups including commuters, residents, and/or commercial users.

- Commuters will have faster, more reliable transit connections to 255,000 jobs along the corridor, plus many more jobs in the regional and local growth centers including over 135,000 jobs within Downtown Seattle.

- Residents, including historically underserved populations along the route will have faster and more reliable access to their neighborhoods, employment and training opportunities, shopping and commercial services, health and human service resources, and recreation destinations. The targeted improvements from this project will decrease transit trip travel times by 2-5 minutes, reducing delay for all bus riders.

- Commercial users will benefit from improved general purpose traffic flow and reduced conflicts with buses from speed and reliability treatments such as improvements to traffic signal timing and improved channelization.

- Faster, more reliable and easier to access bus service will result in increased ridership, higher corridor person throughput, fewer SOV’s on the corridor and on other congested arterial and highways, better transfer experiences for riders, and safer active transportation access. As a result, ridership on the Route 36 is expected to increase between 2-4% or 200-400 new weekday trips, improving traffic flow and congestion along the Route 36 corridor which will benefit all travelers on the corridor.

6. **Describe how the project will benefit those groups identified in the President’s Order for Environmental Justice, seniors, people with disabilities, those located in highly impacted communities, and/or areas experiencing high levels of unemployment or chronic underemployment**.

King County Metro and the City of Seattle have prioritized Route 36 corridor improvements because the route serves high-demand areas that include significant numbers of transit dependent groups. Public transit service is critically important to the over 85,000 people living along the corridor including 60% minority populations, 14% seniors, 20% of households living in poverty, 14% living with a disability, and 37% without access to a vehicle.

This project would provide these groups faster, more reliable transit trips, affording easier and safer access to important destinations including: over 255,000 jobs; the Jefferson and Van Asselt community centers; the Veterans Administration Hospital; the Beacon Hill and New Holly public libraries; the Jefferson and Dr. Jose Rizal parks; numerous shopping centers and places of worship. The route provides convenient transit transfers at the Othello and Beacon Hill LINK stations, providing access to numerous other important destinations.

7. **Describe how the project will support the establishment of new jobs/businesses or the retention of existing jobs/businesses including those in the industry clusters identified in the adopted Regional Economic Strategy**.

Consistent with a foundational goal of the PSRC’s Regional Economic Strategy of “Ensuring residents have access to family wage jobs and employers have access to world class talent”, this project would increase transit reliability, speed, and access to jobs/businesses from all industry clusters, promoting retention and expansion of those jobs/businesses. The corridor currently serves 255,000 jobs within ½ mile of the corridor. Employment will increase 12% to 286,000 by 2040 according to PSRC forecasts.

Improving transit speed, reliability and access between homes and worksites improves local and regional economic viability and sustainability. The project would increase travel convenience and reliability while reducing travel time for commuters, increasing access to employment and helping to ensure a competitive pool of workers for employers. The connection between industry and transit is referenced in numerous PSRC, Seattle planning and policy documents.
PSRC’s Regional Economic Strategy also references the link between the region’s vitality and a healthy transportation system. One of the key components of this healthy system is improving the options for transit oriented development (TOD). The proposed Route 36 Speed and Reliability Corridor Improvements project supports TOD by providing better transit connections to regional growth centers and Urban Villages characterized by dense mixed use developments and TODs.

8. **Does the project promote Commute Trip Reduction (CTR) opportunities?**

The proposed project will promote CTR opportunities by improving transit reliability, reducing delay and making bus travel more attractive and convenient for all employers at growth/activity centers along the Route 36 corridor. Transit will become a faster, more viable option for people traveling along Route 36 to any of the 135,000 jobs located in the Downtown Seattle Regional Growth Center and the 255,000 jobs located within ½ mile of the corridor.

There are approximately 172 CTR-affected employers currently within a ½ mile of the Route 36 corridor who would benefit from the proposed project improvements. Improved transit reliability will enable increased timed transfer predictability to other connecting modes and services, a major factor in meeting commute travel patterns. The project’s proposed access improvements will decrease pedestrian and bike travel times, another important factor in commute behavior. As transit services become faster and more reliable, the travel time of combined pedestrian-bus or bike-bus trips become fast enough to make them viable and attractive transportation alternatives to driving alone.

Criteria: System Continuity/Long Term Benefit-Sustainability

1. **Describe how this project provides a "logical segment" that serves a center, or allows users to access the system.**

The planned speed and reliability improvements implemented through this project are the logical next steps to improving system operation along this corridor. Route 36 runs in a very urban, highly developed corridor. Addressing congestion and increasing through-put in the corridor by doing significant widening is not feasible due to high cost. Access to and from the centers will be enhanced through specific corridor improvements implemented as part of this project.

As discussed in the Plan Consistency Section above, this project is recommended in both Metro CONNECTS and the Seattle Transit Master Plan to improve speed and reliability on this priority bus transit corridor serving high-density development in both regional and locally designated centers.

The corridor provides access to destinations in the Downtown Seattle and First Hill/Capitol Hill Regional Growth Centers and the Othello and North Beacon Hill urban villages, as well as the Metro Transit Activity Centers at Othello Station and Beacon Hill Station. Improvements are targeted along the corridor to improve access to each of those centers.

2. **Describe how the project fills in a missing link or removes barriers to a center (e.g. congestion, inadequate transit service/facilities.). Describe how this project will relieve pressure or remove a bottleneck on the Metropolitan Transportation System and how this will positively impact overall system performance.**

This project will remove barriers that hinder transit from accessing the regional and local centers in a timely and reliable way. Congestion along these routes create a travel time barrier that pushes potential transit users to other modes due to the time penalty of using transit.

The project would address critical bottlenecks and congested corridor segments by implementing traffic engineering solutions such as updated traffic signal timing plans, improved channelization, and transit signal priority. By updating signals and channelization, traffic bottlenecks can be removed, improving traffic flow for all modes using the corridor. The project will also improve the reliability of transit connection to other high capacity transit services including ST Link light rail, ST Sounder rail, Seattle’s First Hill Streetcar and Metro RapidRide C Line service, providing positive impacts to the larger regional transportation system.

These investments are projected to improve service reliability by decrease transit travel time by 2-4 minute per trip. With increased reliability, transit will become a more attractive and viable option for even more riders, and is projected to increase route ridership between 2-4% or 200 to 400 average weekday trips, translating to 80,000 new riders per year, improving the capacity and efficiency of the service.

3. **Describe how this project addresses safety and security.**

The Route 36 Speed and Reliability Corridor Improvements project addresses both safety and security along the corridor in multiple ways:

1) Reduces conflict between general purpose traffic and transit by providing transit only bus...
lanes, improved channelization, and transit queue jumps at key intersections. This will lower collision rates and improve the operational efficiency of the corridor.

2) Provides improved transit zones, high visibility crosswalks, better lighting, possibly reconstruct sidewalks and bike connections, new improved stop shelters, bus bulbs and other improvements at select bus stops. These improvements will help riders safely access Route 36 service create a safer, more secure customer environment.

3) Increases mode shift from personal vehicle travel to transit. A 2016 American Public Transportation Association Study concluded that transit trips are 10 times safer per mile than car trips.

4. Describe how the project improves intermodal connections (e.g. between autos, ferries, commuter rail, high capacity transit, bus, carpool, bicycle, etc.), or facilities connections between separate operators of a single mode (e.g., two transit operators).

Faster, more reliable trips on Route 36 will result in fewer missed transfers, reduced schedule deviations, and less waiting for transfer connections to/from other modes, resulting in substantially shorter trips. This increases the efficiency and effectiveness of the regional transit system by providing a more connected and streamlined system.

Route 36 connects to Link light rail and other Metro routes at Othello and Beacon Hill stations (both Metro Transit Activity Centers). In Downtown Seattle, it also connects with Washington State Ferries, Kitsap Fast Ferries, the King County Water Taxi, ST Sounder Commuter rail, the First Hill Streetcar, multiple Metro bus and RapidRide routes, and regional express bus routes operated by Sound Transit, and Community Transit. The route also connects with the Seattle bike network throughout its length, including multiple regional trails.

5. If applicable, describe how the project provides an improvement in travel time and/or reliability for transit users traveling to and/or within centers.

The project will provide improved travel time and reliability for transit service and users. It will do this by implementing targeted, transit-preferential infrastructure improvements along the route which are intended to provide travel time savings of 2-5 minutes, or 5-10% per trip.

Transit trips between the Othello and Beacon Hill urban villages and the Downtown Seattle Regional Growth Center - as well as other Regional Growth Centers that are accessible from Downtown Seattle - will be faster and more reliable. Each of the proposed project improvement strategies will improve transit performance at traffic bottlenecks or congested areas, increasing service reliability by reducing schedule deviations. See Attachment 4 for list of preliminary improvements.

6. If applicable, describe how the project increases transit use to or within centers.

This project will improve Route 36 trip speed by 5-10% (2-5 minutes per trip) and improve schedule reliability for travel within and between the Downtown Seattle and First/Hill Capital Hill Regional Centers and the Beacon Hill and Othello Urban Villages. The corridor currently serves 85,000 people and 255,000 jobs within ½ mile of the route. The improved transit travel time in the corridor will attract additional riders from this candidate pool.

As a result of the proposed improvements, transit ridership is projected to increase 2-4% adding 200-400 average new weekday riders or up to 80,000 new transit riders per year. Faster, more reliable trips and improved access to Route 36 service will provide greater mobility to people living and working along the Route 36 corridor and is recommended in local and regional plans to support increased transit oriented Centers development supporting even higher transit use.

7. Describe how this project supports a long-term strategy to maximize the efficiency of the corridor? Describe the problem and how this project will remedy it.

The problem in this corridor is that it is in a very urban, built-out environment with high levels of congestion. Increasing the operational efficiency and person through-put by widening the roadway is cost prohibitive.

This project supports a long term strategy of maximizing the efficiency and person through-put of this corridor. It does this by making affordable strategic improvements that will give transit preferential treatment and priority over general purpose users. Once these improvements are in place they will be permanent and provide a long term benefit by allowing transit to bypass or have preferential treatment along segments of the corridor and at key intersections that experience congestion.

Currently, Route 36 experiences reliability problems, failing to meet the system wide performance guidelines of 80% on-time performance, and is identified as an investment priority in Metro’s 2019 System Evaluation Report. The route is often impacted by traffic congestion, resulting in a slow and unreliable experience with nearly 40% of trips late during PM peak hours. Investments to improve speed and reliability are particularly important for frequent service and overall transit performance, since low reliability results in bus bunching, reducing actual frequencies.
King County Metro has a goal to provide high quality, reliable and efficient transit service. This Route 36 project was developed through a thorough evaluation process using Metro’s Transit Service Guidelines that evaluate ridership, connections to centers, travel time variability, schedule reliability and social equity. This evaluation process was established as part of Metro’s long-range planning efforts. The project’s cost-effective transit preferential treatments will improve transit operations without the high cost of roadway widening and acquisition of additional right of way.

The proposed project meets the purpose of Metro’s Transit Speed and Reliability program to implement lower-cost transit speed and reliability to improve service quality and increase ridership. The project helps meet Metro’s commitment to support local land use and regional transportation investments that promote the continued viability of King County and the Region.

Criteria: Air Quality and Climate Change

1. Please select one or more elements in the list below that are included in the project’s scope of work, and provide the requested information in the pages to follow.
 Roadway Improvement, Transit and Ferry Service, Intelligent Transportation Systems

Air Quality and Climate Change: Roadway Improvement

1. What is the length of the project?
 6.5 miles

2. What is the average daily traffic before and after the project?
 AADT ranges from 2,400 to 15,000 along the corridor. The project is not expected to substantially change AADT levels. Please see Attachment 5 from SDOT’s 2019 Traffic Report

3. What is the average speed before and after the project?
 Posted speed limits are 25-30 mph throughout the corridor. Average transit speeds are 12-14 mph. Speed limits are not expected to change as a result of this project, though average transit speeds are expected to increase approximately 5-10%.

4. What is the average daily transit ridership along the corridor?
 9,800 weekday riders

5. How many daily peak period transit trips serve the corridor?
 AM peak period: 53 trips (13 trips/hour); PM peak period: 72 trips (18 trips/hour)

6. What is the expected increase in transit speed due to the BAT/HOV lanes?
 BAT/HOV lanes are expected to increase transit speeds by 13.5%, based on the PSRC regional default values from the Air Quality and Climate Change spreadsheet.

7. What is the expected increase in transit ridership due to the BAT/HOV lanes?
 BAT/HOV lanes are expected to increase peak period transit ridership by 1.5%, based on the PSRC regional default values from the Air Quality and Climate Change spreadsheet.

8. What is the average speed of freight truck traffic on the facility?
 Up to 4%

9. Will the project result in shorter trips and reduced VMT? If so, please explain.
 Increased transit speed and reliability will induce mode shift from SOV to transit reducing average daily VMT by 540 (197,000 annually), reducing CO2 emissions by 12,000 kg per year, and saving approximately 8,000 gallons of fuel annually.

10. Please describe the source of the project data provided above (e.g., Environmental Impact Statement, EPA/DOE data, traffic study, survey, previous projects, etc.).
 SDOT 2019 Traffic Report, SDOT Freight Master Plan, King County Metro onboard systems and automated passenger counter data, experience on past projects.

Air Quality and Climate Change: Transit and Ferry Service

1. What is the current transit ridership for the affected transit stops or routes?
 9,800 daily weekday riders

2. What is the average transit trip length for the affected routes?
 Average transit trip length along Route 36 is 2.22 miles.

3. What is the average transit trip length of the entire system?
4. If the project includes a park and ride, how many new stalls are being provided?
N/A

5. Are there other amenities included to encourage new transit ridership? If so, please describe.
Approximately 70 bus stops could be improved as a result of this project, including enhancements to safety, security, and comfort. While upgrades as part of this project would mainly focus on improving the speed and reliability of buses, the upgrades could allow for additional or improved bus stop amenities that would encourage new transit ridership. Improvements such as added bus bulbs, shelters, and lighting could accompany bus stop speed and reliability enhancements, resulting in improved safety and comfort for riders.

6. What is the expected increase in transit ridership from the project?
2-4% (80,000 riders per year)

7. If a new or expanded ferry service, what is the length of the driving route being replaced?
N/A

8. Please describe the source of the project data provided above (e.g., Environmental Impact Statement, EPA/DOE data, traffic study, survey, previous projects, etc.).
SDOT 2019 Traffic Report, SDOT Freight Master Plan, King County Metro onboard systems and automated passenger counter data, and evaluation results/experience on past transit speed and reliability projects implemented by King County Metro Transit.

Air Quality and Climate Change: Intelligent Transportation Systems and Corridor Efficiency

1. What is the existing level of service?
The existing level of service along these corridors varies, with certain sections suffering from significant levels of congestion (LOS F) while others operate in free flow (LOS A). As part of the prioritization effort for the proposed improvements, segments were identified where transit vehicles traveled at less than 50% of the posted speed limit.

2. What are the existing number of lanes (in one direction)?
The number of lanes varies between one and two with most sections having one and either protected left turn lanes at intersections or a continuous two-way center left turn lane. Most of the corridor has a curbside parking lane in each direction, and some sections have adjacent bike lanes.

3. What is the existing average daily traffic?
AADT ranges from 2,400 to 15,000 along the corridor.

4. What is the existing average speed?
Posted speed limits are 25-30 mph throughout the corridor. Average transit speeds are 12-14 mph.

5. What are the ITS improvements being provided?
The primary ITS improvements being provided are transit signal priority (TSP) and new transit queue jumps at selected intersections. Transit priority signals installation will be planned for intersections with level of service C, D and E along the route. The installation will use Nextgen TSP and Nextgen Wireless technologies. Signal controller upgrades may also occur where needed to accommodate signal retiming/queue jumps. Controller upgrades could include accommodating transit signal priority and communication to the City of Seattle’s central signal management system. Additional ITS improvements considered include real-time arrival signs at high-ridership bus stops.

6. How many intersections are being improved?
About 8 intersections were identified for potential improvements to signal timing, queue jumps, and channelization.

7. What is the length of the project?
6.5 miles

8. What is the percentage of freight truck traffic in the project area?
Up to 4%

9. What is the expected improvement to level of service?
This project will improve service reliability and reduce bus travel time by approximately 5-10% during peak hours.

10. What is the expected improvement to average speed?
No specific data on improvements to average bus speeds exists at this time. This project will improve service reliability and reduce bus travel time by approximately 5-10% during peak hours.

11. **What is the expected improvement to average vehicle delay?**
 There is no project specific data available, but a prior evaluation of the RapidRide E-Line documents how much time TSP can save for buses. This study showed 3% to 5% transit travel time reductions in the peaks and 8% to 14% reductions in transit delay during peak hours.

12. **Please describe the source of the project data provided above (e.g., Environmental Impact Statement, EPA/DOE data, traffic study, survey, previous projects, etc.)**
 Past project experience on existing Metro RapidRide BRT lines.

Criteria: Project Readiness and Financial Plan

1. **What is the PSRC funding source being requested?**
 N/A

2. **Has this project received PSRC funds previously?**
 No

3. **If yes, please provide the project’s PSRC TIP ID**
 N/A

<table>
<thead>
<tr>
<th>Phase</th>
<th>Year</th>
<th>Alternate Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>construction</td>
<td>2023</td>
<td></td>
<td>$1,000,000.00</td>
</tr>
<tr>
<td>construction</td>
<td>2024</td>
<td></td>
<td>$1,449,000.00</td>
</tr>
</tbody>
</table>

Total Request: $2,449,000.00

Total Estimated Project Cost and Schedule

Planning

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Secured/Unsecured</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Secured</td>
<td>$348,426.00</td>
</tr>
</tbody>
</table>

Expected year of completion for this phase: 2021

PE

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Secured/Unsecured</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Reasonably Expected</td>
<td>$863,574.00</td>
</tr>
</tbody>
</table>

Expected year of completion for this phase: 2022

Construction

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Secured/Unsecured</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>5307</td>
<td>Unsecured</td>
<td>$2,449,000.00</td>
</tr>
<tr>
<td>Local</td>
<td>Reasonably Expected</td>
<td>$817,000.00</td>
</tr>
</tbody>
</table>

Expected year of completion for this phase: 2024

Summary

1. **Estimated project completion date**
 12/2024

2. **Pretty total project cost**
$4,478,000.00

Funding Documentation

1. **Documents**
 Attachment_3.pdf

2. **Please enter your description of your financial documentation in the text box below.**
 Local match funds will be secured as part of the 2023-2024 King County budget. The 2023-2024 budget will be developed in the spring/summer of 2022 and is scheduled for adoption in the fall of 2022. Metro management will approve the capital program budget request and transmit it to the County Executive’s Office by July 1, 2022. The capital budget requests will be reviewed, finalized, and sent to the King County Council on September 24, 2022. The Council should adopt the final budget by mid-November, 2022.

 A budget appropriation for the project was included in the budget appropriation funded in Metro’s 2019-2020 capital budget (#1134293), a repurposed appropriation which is funding the Route 36 Speed and Reliability Improvement project’s current planning phase. The Planning phase was included in King County Metro as part of its overall capital program requested for the proposed FY 2021-2022 biennial budget. Please see Attachment 3.

Project Readiness: PE

1. **Are you requesting funds for ONLY a planning study or preliminary engineering?**
 No

2. **What is the actual or estimated start date for preliminary engineering/design?**
 8/2021

3. **Is preliminary engineering complete?**
 No

4. **What was the date of completion (month and year)?**
 N/A

5. **Have preliminary plans been submitted to WSDOT for approval?**
 N/A

6. **Are there any other PE/Design milestones associated with the project? Please identify and provide dates of completion. You may also use this space to explain any dates above.**
 N/A

7. **When are preliminary plans expected to be complete?**
 12/2022

Project Readiness: NEPA

1. **What is the current or anticipated level of environmental documentation under the National Environmental Policy Act (NEPA) for this project?**
 Documented Categorical Exclusion (DCE)

2. **Has the NEPA documentation been approved?**
 No

3. **Please provide the date of NEPA approval, or the anticipated date of completion (month and year).**
 5/2022

Project Readiness: Right of Way

1. **Will Right of Way be required for this project?**
 No

2. **What is the actual or estimated start date for right of way?**
 N/A

3. **What is the estimated (or achieved) completion date for the right of way plan and funding estimate (month and year)?**
 N/A
4. Please describe the right of way needs of the project, including property acquisitions, temporary construction easements, and/or permits.
N/A

5. What is the zoning in the project area?
N/A

6. Discuss the extent to which your schedule reflects the possibility of condemnation and the actions needed to pursue this.
N/A

7. Does your agency have experience in conducting right of way acquisitions of similar size and complexity?
N/A

8. If not, when do you expect a consultant to be selected, under contract, and ready to start (month and year)?
N/A

9. In the box below, please identify all relevant right of way milestones, including the current status and estimated completion date of each.
N/A

Project Readiness: Construction

1. Are funds being requested for construction?
Yes

2. Do you have an engineer's estimate?
No

3. Engineers estimate document
N/A

4. Identify the environmental permits needed for the project and when they are scheduled to be acquired.
Documented Categorical Exclusion (DCE)

5. Are Plans, Specifications & Estimates (PS&E) approved?
N/A

6. Please provide the date of approval, or the date when PS&E is scheduled to be submitted for approval (month and year).
N/A

7. When is the project scheduled to go to ad (month and year)?
3/2023

Other Considerations

1. Describe any additional aspects of your project not requested in the evaluation criteria that could be relevant to the final project recommendation and decision-making process.
The City of Seattle has two capital projects underway that coincide with the proposed Route 36 Speed and reliability Improvement project: 1) SDOT’s Beacon Ave S Safety Enhancements will construct pedestrian safety improvements along the Route 36 corridor in 2021. 2) SDOT’s Beacon Hill Bike Route will install a bike route in 2023 that connects SE Seattle, including Beacon Hill and Othello to Downtown Seattle. Metro is coordinating with the City on these projects.

If SDOT selects project designs that intersect with the Route 36, there could be opportunity for Metro and SDOT to partner on access to transit improvements. While this is very likely for the Beacon Ave S Safety Enhancements project between S. Lander St. and S Stevens Street, SDOT is in the early planning stage of Beacon Hill Bike Route project and are still considering routing/design options.

2. Describe any innovative components included in your project: these could include design elements, cost saving measures, or other innovations.
Route 36 operates as a zero-emissions trolley bus route. Trolley buses are a clean, zero-emissions fleet that is a critical part of fulfilling Metro’s and the King County’s commitment to green technologies, greenhouse gas reduction and leading on climate action. Power to operate trolley buses comes from Seattle City Light, which generates nearly 100% of its power from non-GHG emitting sources (hydroelectric, nuclear, wind, and biomass).

3. Describe the process that your agency uses to determine the benefits of
projects; this could include formal cost-benefit analysis, practical design, or some other process by which the benefits of projects are determined.

Metro is required by King County ordinance to conduct an annual assessment of its transit system. The assessment is based on adopted Service Guidelines, established criteria and processes that Metro uses to analyze and plan changes to our transit system. Metro’s 2019 System Evaluation Report identified Route 36 as one of the top five routes recommended for speed and reliability improvements.

Past Metro transit speed and reliability projects have demonstrated their cost effectiveness in enhancing transit service. Metro’s Speed and Reliability program identifies and prioritizes projects to improve performance and increase ridership. The program focuses on working with our partner cities to increase the operating efficiency of existing bus service in highly congested corridors.

During the planning phase of this project currently underway, a list of proposed speed and reliability strategies has been identified along the corridor. This list will be prioritized for project implementation based on cost, user benefit, projected travel time savings, complexity of each project, and partner City input (please see Attachment 4).

4. **Final documents**
 - Attachment_2.pdf, Attachment_4.pdf, Attachment_5.pdf
April 14, 2020

Rob Gannon
General Manager
King County Metro Transit
201 South Jackson Street, KSC-TR-0415
Seattle, Washington 98104

Dear Mr. Gannon:

On behalf of the City of Seattle, I am writing to express support for King County Metro Transit’s application to the 2020 PSRC Regional grant competition for travel time and reliability improvements to the Route 36 corridor. This interagency project, led by King County Metro Tranist, will implement transit travel time and reliability investments on the Route 36 corridor to reduce peak-hour bus travel times, improve service reliability, increase transit ridership, and improve access to transit.

Primary elements of the project include traffic signal retiming, traffic signal modification, signal synchronization, modifications to signal timing, new bus lanes, channelization improvements, upgraded bus stop amenities, and improved bus stop spacing. These investments will improve service reliability and reduce bus travel time by approximately 5-10% during peak hours, resulting in 2-5 minutes saved per trip and increasing transit ridership by 2-4%.

With over 9,800 weekday riders, the Route 36 is one of Seattle’s and King County Metro’s highest ridership routes. This project will improve transit travel time, reliability, and access from urban villages in Othello and Beacon Hill to downtown Seattle. Additionally, the Route 36 corridor has a high proportion of low-income, minority, and transit-dependent populations. The communities along the Route 36 corridor will benefit from improved access as well as faster and more reliable travel to employment and education opportunities and other destinations. Furthermore, this project will lower the demand for drive-alone vehicle trips by improving transit service reliability and increasing transit usage.

Overall, this project supports the City of Seattle’s mobility, climate, and equity goals and is consistent with the Seattle Transit Master Plan. It also supports broader countywide and regional policies and goals. The City of Seattle enthusiastically supports the selection of this project for funding.

Sincerely,

Sam Zimbabwe
Director
Capital Appropriation Proposal

Budget: 2019-2020 Biennial. **Scenario:** Executive Proposed. **Agency:** Transit. **Fund:** All. **Project:** All. **Cap Status:** All. **Is IT Proj?** Both Yes and No

TDC MCDP CORRIDOR #1

<table>
<thead>
<tr>
<th>Department</th>
<th>TRANSPORTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council District(s)</td>
<td>5, 9</td>
</tr>
<tr>
<td>Fund</td>
<td>3641 PUBLIC TRANS CONST-UNREST</td>
</tr>
<tr>
<td>Class Code</td>
<td>STANDALONE</td>
</tr>
<tr>
<td>Substantial Completion</td>
<td>03/31/2023</td>
</tr>
<tr>
<td>Location</td>
<td>TBD</td>
</tr>
<tr>
<td>Cap Status</td>
<td>Approved</td>
</tr>
</tbody>
</table>

BUDGET (Appropriation)

<table>
<thead>
<tr>
<th>Capital Phase</th>
<th>ITD Budget thru 06/2018</th>
<th>FY19-20</th>
<th>FY21-22</th>
<th>FY23-24</th>
<th>Total Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Planning</td>
<td>$0</td>
<td>$348,426</td>
<td>$38,714</td>
<td>$0</td>
<td>$387,140</td>
</tr>
<tr>
<td>Planning Date</td>
<td>01/01/20 - 06/30/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Preliminary Design</td>
<td>$0</td>
<td>$0</td>
<td>$615,865</td>
<td>$0</td>
<td>$615,865</td>
</tr>
<tr>
<td>Planning Date</td>
<td>01/01/21 - 06/30/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Final Design</td>
<td>$0</td>
<td>$0</td>
<td>$1,148,508</td>
<td>$0</td>
<td>$1,148,508</td>
</tr>
<tr>
<td>Planning Date</td>
<td>07/01/21 - 06/30/22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Implementation</td>
<td>$0</td>
<td>$0</td>
<td>$2,113,212</td>
<td>$0</td>
<td>$2,113,212</td>
</tr>
<tr>
<td>Planning Date</td>
<td>07/01/22 - 03/31/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Closeout</td>
<td>$0</td>
<td>$0</td>
<td>$299,267</td>
<td>$0</td>
<td>$299,267</td>
</tr>
<tr>
<td>Planning Date</td>
<td>04/01/23 - 07/31/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Acquisition</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Planning Date</td>
<td>01/01/21 - 06/30/22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Budget</td>
<td>$0</td>
<td>$348,426</td>
<td>$4,215,566</td>
<td>$0</td>
<td>$4,563,992</td>
</tr>
</tbody>
</table>

ART

<table>
<thead>
<tr>
<th>ART</th>
<th>FY19-20</th>
<th>FY21-22</th>
<th>FY23-24</th>
<th>Total 6-Year Art Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

REVENUE

<table>
<thead>
<tr>
<th>Account</th>
<th>FY19-20</th>
<th>FY21-22</th>
<th>FY23-24</th>
<th>Total 6-Year Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>30800 - BUDGETED FUND BALANCE</td>
<td>$348,426</td>
<td>$4,215,566</td>
<td>$0</td>
<td>$4,563,992</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>$348,426</td>
<td>$4,215,566</td>
<td>$0</td>
<td>$4,563,992</td>
</tr>
</tbody>
</table>
Capital Appropriation Proposal

EXPENSE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Planning</td>
<td>$0</td>
<td>$0</td>
<td>$348,426</td>
<td>$38,714</td>
<td>$0</td>
<td>$387,140</td>
</tr>
<tr>
<td>2 Prelim Design</td>
<td>$0</td>
<td>$0</td>
<td>$615,865</td>
<td>$0</td>
<td>$0</td>
<td>$615,865</td>
</tr>
<tr>
<td>3 Final Design</td>
<td>$0</td>
<td>$0</td>
<td>$1,148,508</td>
<td>$0</td>
<td>$0</td>
<td>$1,148,508</td>
</tr>
<tr>
<td>4 Implementation</td>
<td>$0</td>
<td>$0</td>
<td>$1,405,244</td>
<td>$707,968</td>
<td>$0</td>
<td>$2,113,212</td>
</tr>
<tr>
<td>5 Closeout</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$299,267</td>
<td>$0</td>
<td>$299,267</td>
</tr>
<tr>
<td>6 Acquisition</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total Expense</td>
<td>$0</td>
<td>$0</td>
<td>$348,426</td>
<td>$3,208,331</td>
<td>$1,007,235</td>
<td>$4,563,992</td>
</tr>
</tbody>
</table>

BUDGET ANALYSIS

<table>
<thead>
<tr>
<th>Capital Phase</th>
<th>Baseline</th>
<th>Estimate At Completion</th>
<th>ITD Actuals thru 06/2018</th>
<th>ITD Budget thru 06/2018</th>
<th>ITD Actuals thru 12/2017 + 2018 Projected YE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Planning</td>
<td>$0</td>
<td>$387,139</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>2 Preliminary Design</td>
<td>$0</td>
<td>$615,865</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>3 Final Design</td>
<td>$0</td>
<td>$1,148,509</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>4 Implementation</td>
<td>$0</td>
<td>$2,113,212</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>5 Closeout</td>
<td>$0</td>
<td>$299,267</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>6 Acquisition</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>$0</td>
<td>$4,563,992</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Planning</td>
<td>$0</td>
<td>$348,426</td>
<td>$348,426</td>
<td>$0</td>
</tr>
<tr>
<td>2 Preliminary Design</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>3 Final Design</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>4 Implementation</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>5 Closeout</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>6 Acquisition</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>$0</td>
<td>$348,426</td>
<td>$348,426</td>
<td>$0</td>
</tr>
</tbody>
</table>

NARRATIVES

TDC MCDP CORRIDOR #1

1. CURRENT PROJECT SCOPE

Metro Connects Development Plan Corridor #1 - This project will improve transit performance and quality of service on a new line connecting Covington to SeaTac airport via Kent Station, comparable to existing Routes 180 and 168 (Line 1514 per METRO CONNECTS service network). Improvements include traffic signal retiming, traffic operation changes at selected intersections, signal queue jumps and bypass lanes for buses to get ahead of queued traffic at busy signalized intersections, improved bus access, layover circulation and facilities, and bus zone improvements.

2. PROGRAMMATIC PROJECT DISCUSSION

N/A
Capital Appropriation Proposal

3. PROJECT JUSTIFICATION

The METRO CONNECTS Development Plan identifies route 1514 as one of the frequent transit corridors to receive capital investments. The capital investments on Route 1514 are expected to improve transit reliability and quality of service for Metro riders by reducing route travel times by five to ten percent. In addition, this project distributes capital investment to promote social and geographic equity.

4. PROJECT BENEFITS/OUTCOMES

Speed and reliability improvements for this corridor will defer the need to deploy additional service hours for a few years.

5. BUDGET REQUEST BASIS

The level of effort covered in this biennium will include planning work. The amount requested is based on estimates of previous planning project costs.

6. FUNDING AND REVENUE DISCUSSION

The County will seek regional, state, and federal grants for city partnership and city-led projects, when possible. Local and non-eligible grant funds come from the Public Transportation Fund, capital sub fund.

7. OPERATING BUDGET AND OTHER IMPACTS

Transit signal priority (TSP) technology deployment will require ongoing operation and maintenance (O&M). The level of effort will be depending on the number of TSP installations and type of technology selected for deployment.

8. PROJECT STATUS

Pre-planning work is currently underway to reach out to local jurisdictions for their support, interest, and concurrence in identifying needs to improve transit service in this corridor. Note that the implementation of capital investments to improve transit speed and reliability relies on a city's availability to review and approve plans, install equipment, and sometimes perform construction.

9. ALTERNATIVES ANALYSIS

To be determined after pre-planning work has been completed.

10. OTHER AGENCY INVOLVEMENT

Cities of Kent, Burien, Maple Valley, Covington, and SeaTac.

11. ART ELIGIBILITY

Not Art Eligible, roadway projects with technology equipment elements

12. EQUITY AND SOCIAL JUSTICE IMPACT

13. STRATEGIC CLIMATE ACTION PLAN ALIGNMENT

Not applicable to this project. Roadway and signal infrastructures are owned and maintained by local jurisdictions.

14. OTHER CONSIDERATIONS (OPTIONAL)

ADDITIONAL QUESTIONS FOR IT PROJECTS ONLY

15. STRATEGIC IT PLAN ALIGNMENT

16. PROJECT COMPLEXITY
<table>
<thead>
<tr>
<th>NARRATIVES</th>
<th>TDC MCDP CORRIDOR #1</th>
<th>1134293</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. CAPACITY TO IMPLEMENT THE PROJECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. PROJECT RISKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Project</td>
<td>Location</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>A</td>
<td>TSP</td>
<td>S Jackson St (5th Ave S - 12th Ave S)</td>
</tr>
<tr>
<td>B</td>
<td>Left turn restrictions</td>
<td>S Jackson St (5th Ave S - 8th Ave S)</td>
</tr>
<tr>
<td>C</td>
<td>BAT lanes</td>
<td>S Jackson St (8th Ave S - 12th Ave S)</td>
</tr>
<tr>
<td>D</td>
<td>NBL transit signal</td>
<td>12th Ave S / S Jackson St</td>
</tr>
<tr>
<td>E</td>
<td>SB transit queue jump</td>
<td>12th Ave S / S Charles St / Golf Dr S</td>
</tr>
<tr>
<td>F</td>
<td>In-lane stops and/or stop rebalancing</td>
<td>12th Ave S and 14th Ave S at: Golf Dr S, S Judkins St, S Atlantic St, S Massachusetts St</td>
</tr>
<tr>
<td>G</td>
<td>SB BAT lane</td>
<td>Beacon Ave S (14th Ave S - S Lander St)</td>
</tr>
<tr>
<td>H</td>
<td>SB in-lane stop</td>
<td>Beacon Ave S / S Bayview St</td>
</tr>
<tr>
<td>I</td>
<td>Transit queue jumps</td>
<td>Beacon Ave S / 15th Ave S</td>
</tr>
<tr>
<td>J</td>
<td>NB transit queue jump</td>
<td>Beacon Ave S / S Lander St</td>
</tr>
<tr>
<td>K</td>
<td>In-lane stops and/or stop rebalancing</td>
<td>Beacon Ave S at: S Stevens St, S Hanford St</td>
</tr>
<tr>
<td>L</td>
<td>NB in-lane stop</td>
<td>Beacon Ave S / S Spokane St</td>
</tr>
<tr>
<td>M</td>
<td>Transit queue jumps</td>
<td>Beacon Ave S / S Spokane St</td>
</tr>
<tr>
<td>N</td>
<td>Transit queue jumps and/or phasing improvements</td>
<td>Beacon Ave S / S Columbian Way</td>
</tr>
<tr>
<td>O</td>
<td>In-lane stops and/or stop rebalancing</td>
<td>Beacon Ave S at: S Dawson St, S Brandon St, S Orcas St, S Spencer St</td>
</tr>
<tr>
<td>P</td>
<td>Transit queue jumps and/or phasing improvements</td>
<td>Beacon Ave S / S Graham St</td>
</tr>
<tr>
<td>Q</td>
<td>In-lane stops</td>
<td>Beacon Ave S, S Myrtle St, and S Myrtle Pl at: S Holly St, 27th Ave S, 32nd Ave S, S Holly Park Dr</td>
</tr>
<tr>
<td>R</td>
<td>Signal phasing improvements</td>
<td>Beacon Ave S / S Myrtle St</td>
</tr>
</tbody>
</table>
FIGURE 7: 2018 SEATTLE TRAFFIC FLOW MAP